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The linear parallel and incompressible stability of a family of axisymmetric wake 
profiles is studied in the range of Reynolds numbers where helical vortex shedding 
from bluff bodies of revolution is observed. The family of mean flow profiles allows 
for the variation of the wake depth as well as for a variable ratio of wake width to 
mixing-layer thickness. It is found that, even without reverse flow, the first helical 
mode is absolutely unstable in the near wake for Reynolds numbers, based on wake 
diameter and free-stream velocity, in excess of 3.3 x lo3. A survey of the region of 
local absolute instability as a function of profile parameters and Reynolds number 
suggests that the large-scale helical vortex shedding, which is observed between 
Reynolds numbers of 6000 and 3 x lo5 for spheres, may be ‘driven’ by a self-excited 
oscillation in the near wake. 

1. Introduction 
The present study has been stimulated by the recent advances in the understanding 

of vortex shedding from two-dimensional bluff bodies, notably its relation to 
stability theory. Experimentally, Mathis, Provansal & Boyer (1984) and Strykowski 
(1986) have shown by ingenious transient measurements that the Karman vortex 
street behind a circular cylinder is the nonlinear (saturated) end product of a self- 
excited, i.e. temporally growing, global wake instability and not a spat,ial response to 
continuously supplied upstream disturbances. This behaviour of the two-dimensional 
wake has been related to the existence of a region of local absolute instability in the 
near wake by, among others, Koch (1985), Monkewitz & Nguyen (1987) and 
Monkewitz (1988). 

In  the axisymmetric wake behind spheres, organized vortex shedding has been 
observed while the boundary layer on the sphere is laminar. Early evidence of vortex 
shedding has been reviewed by Torobin & Gauviii (1959). Achenbach (1974) then 
clearly identified two different modes of shedding : a shear-layer mode, dominant a t  
Reynolds numbers R, (based on sphere diameter and free-stream velocity) between 
about 400 and 6000 and characterized by a Strouhal number that increases with 
Reynolds number, and a second mode of shedding, dominant between Reynolds 
numbers R, of 6000 and 3 x lo5, which is distinguished by an approximately 
constant and well-defined Strouhal number. The vorticity in the latter mode was 
shown by Achenbach (1974), Pao & Kao (1977), Taneda (1978) and Ilegbusi & 
Spalding (1984) to be shed in the form of one helix or a pair of counter-rotating 
helices. As in the case of the circular cylinder in a cross-flow, the vigorous vortex 
shedding in this Reynolds-number range appears to coincide with an increase of the 
drag coefficient cD above a hypothetical ‘smooth’ c,(R) curve (see Schlichting 1968, 
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figures 1.4 and 1.5; and Achenbach 1972). In  view of the above experimental 
findings, it makes sense to investigate how far the similarity to tJhe cylinder wake 
extends, i.e. whether the helical vortex shedding in the axisymmetric wake is also 
possibly related to an absolute instability. 

The concept of absolute versus convective instability has been introduced by 
Briggs (1964), Lifshitz & Pitaevskii (1981) and Bers (1975). Recent reviews of the 
topic have been given by Pierrehumbert (1984), Huerre & Monkewitz (1985), Bechert 
(1985), Huerre (1987) and Monkewitz & Nguyen (1987). In short, the terms absolute 
and convective describe the behaviour of the impulse response of an unstable 
medium. If an impulsively generated small-amplitude transient contaminates the 
entire (parallel) flow, it is termed absolutely unstable. In  this case, a mode with zero 
group velocity that grows in time, i.e. is self-excited, eventually dominates the 
(linear) response. If, on the other hand, the transient or wavepacket is convected 
away from the source and leaves the flow ultimately undisturbed, one speaks of 
convective instability. It is readily noted that this distinction depends on the frame 
of reference. However, in practical problems, where for instance solid boundaries are 
present, there is always a distinguished frame of reference relative to which the 
nature of the instability has to be considered (Lifshitz & Pitaevskii 1981). 

In flows that evolve spatially, the efforts to relate self-excited (absolute) local 
instabilities to the vortex shedding from bluff bodies in particular are met with a 
serious difficulty. At each downstream location within an absolutely unstable region 
a different local mode has zero group velocity. The central issue, then, is which of 
these local modes, if any, corresponds to the observed global response, that is, the 
large-scale vortex shedding in the present situation. One approach in this situation 
is to formulate ad hoc global mode selection criteria on the basis of experimental data 
(see the review of such criteria by Monkewitz & Nguyen 1987). Another approach has 
been taken by Chomaz, Huerre & Redekopp (1988) who investigated a one- 
dimensional model problem described by the Ginzburg-Landau equation, in which 
only one space coordinate in the mean flow direction is retained to allow for non- 
parallel effects. Their main findings can be summarized as follows. When 
investigating global instability modes of their non-parallel system, they found that 
local absolute instability is necessary but not sufficient for a global mode to become 
self-excited, i.e. to grow in time. They show that the region of local absolute 
instability has to reach a finite critical size, which depends on the problem a t  hand, 
before self-excitation is achieved. In practice this means that the first appearance of 
local absolute instability in a flow is not expected to produce any discernible effect. 
It is only the global transition at a higher value of the control parameter (the 
Reynolds number in the present case) that manifests itself. 

In showing that a region of local absolute instability exists in the axisymmetric 
wake, this paper therefore raises the possibility that the observed helical vortex 
shedding is driven by a kelf-excited ‘wavemaker’ in the near wake. Proof, however, 
will have to come from transient experiments similar to the ones of Mathis et al. 
(1984). In addition, the following results can possibly serve to find the vortex 
shedding frequency : The examples presented by Chomaz et al. (1988) as well as the 
experiments of Mathis et al. (1984) and Strykowski (1986) appear to indicate that the 
frequency of a saturated global mode is close to one of the frequencies of the linear 
modes in the flow which have both zero group velocity and a positive temporal 
amplification rate. 
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2. A family of wake profiles and the determination of the absolute or 
convective nature of their instability 

A two-parameter family of axisymmetric wake profiles U( r ) ,  which is defined by 
equation (1) and has already been used by Monkewitz & Sohn (1986), is considered 
for the present study. U thereby represents a parallel mean flow in the x- or 
streamwise direction and r is the radial coordinate. Throughout the paper, velocities 
are made non-dimensional with the average mean velocity U* = t[U,* + Uzax], where 
an asterisk denotes a dimensional quantity, U,* = U*(r = 0) is the centreline velocity 
and Uzax  is the maximum mean velocity found a t  r = co for the profiles (1). Lengths 
are made non-dimensional with the local wake radius b* which is defined by 
U*(b*)  = U * .  Note that the Reynolds number R,  used in the following, will therefore 
be different from the usual R, which is based on the body diameter D* and the free- 
stream velocity. 

U( r )  = l--A+2AF(r),  (1) 

F ( r )  = { 1 + [exp(ln 2 r 2 )  - lIN}-l  

Above, the two profile parameters are the velocity ratio A and the ‘shape 
parameters ’ N .  A thereby controls the depth of the wake with A = - 1 corresponding 
to zero centreline velocity. The shape parameter N ,  on the other hand, controls the 
ratio of mixing-layer thickness to wake width and can be varied between N = co to 
define a top-hat wake bounded by a cylindrical vortex sheet and N = 1 which 
corresponds to a Gaussian far-wake profile. Figure 1 shows the normalized profile 
F ( r )  for several N .  The maximum slope thickness or vorticity thickness CJ,~ of the 
mixing layer on this figure is asymptotically given by 

A comparison of figure 1 with the experimental data of Fail, Lawford & Eyre 
(1959), Carmody (1964) and Scholz (1986) in the wake of a circular disk, and the 
measurements of Riddhagni, Bevilaqua & Lykoudis (1971) behind a sphere shows 
that the expression (1) is well suited to fit actual wake profiles. Even close to the 
body, where profiles commonly have a velocity overshoot a t  the edge of the wake, the 
results of Monkewitz (1988) for the two-dimensional case suggest that  the stability 
characteristics of the actual profiles and the corresponding profiles (1) match very 
closely as long as U z a x  instead of U*(r = co) is used in the non-dimensionalization. 
However, in order to allow the applicaion of the following results to a variety of 
axisymmetric wakes, no specific form of N ( x ;  R) and A ( x ;  R) will be specified. Hence 
N ,  A and R will be treated as independent parameters. 

The viscous linear stability of the parallel velocity field (1) is now investigated. A t  
the Reynolds numbers of interest the mixing layer leaving the body is initially 
laminar such that no difficulty of interpretation arises. Further downstream, in 
addition to the ‘large-scale structures ’ under consideration, small-scale turbulence 
will generally be present. For this case Strange & Crighton (1983, paragraph 2) use 
a triple decomposition into ensemble mean, ‘ large-scale structure ’ and ‘random 
turbulence ’ to show that the initial evolution of large-scale features is still correctly 
modelled by the laminar small-disturbance equations under the following conditions : 
First, the scale of the instability must be much larger than the scale of the random 
turbulence ; and second, the random turbulence must either be weak (of the same 
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FIGURE 1. Normalized velocity profile F ( r ) ,  defined by equation ( l ) ,  for N-' = 1 ,  0.5, 0.3, 0.1, 
and 0. 

order as the instability) or decorellated from the instability on long timescales. 
Disturbances are, as usual, introduced in the normal mode form 

m=m 

p(x, r ,  8, t )  = C gm(r )  exp (ikx+imO-iiwt), 
m=O 

(3) 

where q represents any disturbance quantity, k is the axial and m the azimuthal 
wavenumber, and w is the frequency of the disturbance. The dispersion relation 
k(w ; m) is determined by solving the (incompressible) Orr-Sommerfeld equation in 
cylindrical coordinates, listed in the Appendix for both infinite and finite Reynolds 
number. For this, a shooting algorithm has been implemented. To ensure adequate 
accuracy in all cases, including the ones with thin mixing layers, the equations were 
integrated from r = co and from the wake centreline r = 0, and the solutions were 
matched a t  the centre of the mixing layer r = 1.  For the numerical integration a 
standard fourth-fifth-order Runge-Kutta-Fehlberg scheme with stepsize control 
was used. Following Monkewitz (1978), solutions were kept linearly independent by 
pseudo-orthogonalization. Good initial guesses for the eigenvalues were obtained 
from the inviscid calculations. 

The absolute or convective nature of the instability was investigated using the 
Briggs-Bers criterion which requires the determination of the temporal growth rate 
of the dominant discrete mode a t  the location of an impulse source. From the 
analysis of the large-time asymptotic impulse response (see e.g. Huerre & Monkewitz 
1985), it follows that this mode has zero group velocity dwldk = 0. Hence it is 
associated with a saddle point ko of the dispersion relation w ( k )  in the complex 
k-plane around which w ( k )  has the Taylor expansion 

I n  the w-plane, k ( w )  has therefore in general a branch point of order two at wo. If this 
branch point lies in the upper complex half-plane, i.e. if the absolute growth rate 
Im [wO] is positive, one has absolute instability provided the branch point results 
from the coalescence of a downstream and upstream mode. I n  technical terms this 
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means that the maps k+(w) and k-(w) of contours parallel to the real w-axis must 
separate into the upper and lower half of the complex k-plane respectively when 
these contours in the w-plane are placed sufficiently above the branch point oo (see 
Huerre & Monkewitz 1985, figure 2 in particular). This condition is the same as the 
so-called pinching requirement for the integration contour of the 'wavepacket 
integral ' in the k-plane (see any of the references discussing absolute instability). A 
verification of this requirement in one representative case is shown in the next section 
as figure 4. 

To computationally determine the location of the branch point wo or saddle point 
ko, it is however not necessary to obtain complete maps of k(w). While Deissler (1987) 
chose to fit the expression (4) to three eigenvalues w(k(*)) in order to extrapolate ko, 
the analogous procedure in the w-plane is used for this study. For two w(a) the 
eigenvalues k + ( d i ) )  and k - ( d ) )  on both Riemann sheets emanating from the branch 
point wo are computed and the following expression is fitted to these four eigenvalues 
(see also Monkewitz & Sohn 1986): 

k' -ko = + s ( w - w o ) ~ + 1 ( w - w o ) .  (5) 

That is, the constants s and 1 as well as ko and wo are determined. Then two new 
frequencies di) are chosen closer to the extrapolated branch point wo and the 
procedure is repeated until both wo and ko become stationary (to three significant 
digits or better). 

3. Survey of absolute instability boundaries 
As a first step the absolute growth rate Im [wO] has been explored as a function of 

the inverse shape parameter N-l for A = - 1, infinite Reynolds number, and 
azimuthal wavenumbers m = 0, 1, and 2. For all these cases, both wo and ko are 
shown on figure 2. For m = 0 and m = 2 the calculations were terminated when 
wo/ko became real and a critical layer formed. Hence they do not cover the whole 
range of N on figure 2. The choice of the abscissa on this graph facilitates its 
interpretation as N-l is directly proportional to the mixing-layer thickness for large 
N (equation (2)). In view of the experimental observations it is encouraging that only 
the first helical mode m = 1 is found to have a positive absolute growth rate between 
N = 4.72 and N = 2.57. In support of the work by Sat0 & Okada (1966), the far-wake 
profile with N = 1 is found to be convectively unstable (even for considerable reverse 
flow on the centreline as shown on figure 5 ) .  In the following, the investigation will 
therefore concentrate on this m = 1 mode. 

Next, the transition from convective to absolute instability has been investigated 
as a function of Reynolds number and shape parameter N for the case of zero 
centreline velocity A = - 1 and of A = - 1.1 corresponding to a reverse flow on the 
centreline of 5 % of the free-stream velocity. On figure 3, the Reynolds number R, , 
characterizing the transition to (local) absolute instability is plotted as a function 
of the inverse shape parameter N - l .  On the boundary curves R C A ( l / N )  the absolute 
growth rate Im[wo] is zero. Above these curves, i.e. for R > R c A ,  one finds absolute 
instability, while parameter values below the boundary curves correspond to 
convective instability or to a stable flow. From figure 3 it is seen that the minimum 
R,A,min depends strongly on the velocity ratio with ( A  = -1 ,  N = 3.2) = 

8.2 x lo2 and ( A  = - 1.1 ,  N = 3) = 59. On the other hand, the shape 
parameter N a t  which the minimum R,, is reached, appears quite insensitive to A 
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FIGURE 2.  Branch point wo (- ) and corresponding saddle point ko (---) versus N-’ for 
A = -1, R = co, and m = 0 (O) ,  m = 1 (n), m = 2 (A). Open symbols denote real parts and solid 
symbols imaginary parts. 

and has a value of approximately N x 3. This N corresponds to a profile that has a 
region of constant velocity over about half the wake diameter (see figure l ) ,  i.e. a 
profile found close to the bluff body. For one of these profiles the usual critical 
Reynolds number has also been calculated with the result R, ( A  = - 1,  N = 3.2) = 
9.1. Although the assumption of quasi-parallel flow a t  such low Reynolds numbers 
is questionable, the result nevertheless shows that in the axisymmetric wake the 
range of convective instability between R, and R,, is much larger than in the two- 
dimensional wake (see Monkewitz 1988). This gives rise, under ‘natural ’ excitation 
conditions commonly found in wind tunnels, to  the observation of shear-layer modes 
(Achenbach 1974), associated with maximum spatial growth rate before helical 
vortex shedding becomes dominant. 

That the nature of the instability for R > R,, is indeed absolute has been 
ascertained by verifying the pinching condition (see $ 2 )  in the k-plane. A 
representative example is shown as figure 4 at the minimum R,,, N = 3.2 and 
A = - 1 for which the pinching occurs a t  the real frequency wo = 1.157. It is 
evident that in this case the condition is satisfied as the branches k+(w) and k ( w )  
completely separate into the upper and lower half of the k-plane respectively when 
I m  [w]  = 0.68. 

For the comparison with experimental data on helical vortex shedding, more 
details of the instability characteristics have been determined for them = 1 mode. On 
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FIGURE 4. Maps k(w)  of contours parallel to the real axis of the o-plane for the profile ( 1 )  with 
A = - 1 ,  N = 3.2 and R = 820. -. - .-, contour with Tm lo] = 0.68; -. . - .  . -, Im (01 
= +0.25; -, I ~ ( w ]  = O ;  -...-...- , Im[o] = -0.25; -------, contours Re[w] = 
constant ; 0, double root k+ = k- a t  wo = 1.157 + Oi. The pinching of the integration contour for the 
wavepacket integral ' is indicated by arrows. 
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FIGURE 5.  wo and ko as a function of N-l for: ~ , 1 1 = ~ , A = - l ; o , I 2 = 1 0 0 0 , A = - l ;  
, R = m ,  A = - 1 . 1 ;  0, R = 1 0 0 0 ,  A = - 1 . 1 .  _-- 

figure 5 the location of the branch point w" and the saddle point ko is plotted versus 
the profile shape parameter for A = - 1 and A = - 1.1 as well as the two Reynolds 
numbers of co and 1000. This figure shows that, in the range of Reynolds numbers 
corresponding to the observed helical vortex shedding, it is primarily the velocity 
ratio that affects the stability characteristics. Furthermore, the quantity most 
affected by A is the absolute growth rate Im [w"],  while in all cases of this figure the 
real frequency Re [w' ] ,  and the wavenumber k" appear well approximated by their 
values for A = - 1 and R = m. These results conform with the physical intuition that 
reverse flow (i.e. A < - 1 )  promotes absolute instability, i.e. enhances the growth of 
disturbances that travel upstream. 

To relate these results to the more common stability calculations, the spatial 
instability Characteristics have been computed for A = - 1 and R = co a t  both ends 
N = 4.72 and N = 2.57 of the absolutely unstable interval. Since for these two N the> 
branch point oo lies on the real axis, an infinite slope of k(w)  results there. This is 
shown on figure 6 where, for clarity, only the branches k(w)  are plottcd that 
correspond to the regular (downstream) spatial branches in the adjoining 
convectively unstable regions. From this figure i t  becomcs clear that the maximum 
spatial amplification is not necessarily attained at the branch-point frequency 
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FIGURE 6. Spatial stability characteristics of the profile (1) for A = - 1, R = CO, and : P O - ,  
m = 1, N = 2.57; -n-, m = 1, N = 4.72 with the symbols indicating the location of the 
saddle points ko.  ---, corresponding curves form = 0;  A, maximum spatial amplification of the 
two-dimensional hyperbolic tangent mixing layer with 8, = [4.72 In 21-l. 

W 

Re [wO] (see also Monkewitz & Nguyen 1987, figure 9). For N = 4.72 the shear-layer 
mode associated with maximum spatial growth rate is clearly distinct from the mode 
with zero group velocity and in fact corresponds closely to Michalke's (1965) spatially 
most amplified mode in a plane hyperbolic tangent mixing layer (the comparison 
being made on the basis of equal vorticity thickness). In  addition, figure 6 shows by 
comparison with the m = 0 mode that, as in the axisymmetric jet (Michalke 1971), 
the maximum spatial amplification of the shear-layer mode is virtually independent 
of the azimuthal wavenumber for low m-values and profiles with sufficiently thin 
mixing layers. 

4. Summary and outlook 
For the family of wake profiles under consideration with zero or near-zero 

centreline velocity a sequence of critical Reynolds numbers has been identified : first 
the critical Reynolds number R, of the order of 10 at which the wake becomes 
convectively unstable. Then the occurrence of local absolute instability at an R,, of 
the order of 102-103, depending on the amount of reverse flow (see figure 3), and 
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finally for a sphere wake, according to Achenbach's (1974) experiments, the onset of 
organized helical vortex shedding a t  approximately R,, = 1.5 x lo3 in the present 
normalization. This sequence is identical to the one that leads to a self-excited global 
response in the model problem of Chomaz et al. (1988). Therefore a distinct possibility 
exists that  the helical shedding from spheres and other axisymmetric bluff bodies 
represents such a self-excited response. It is noted though that in flow visualizations 
(e.g. Taneda 1978) the helical vortex structure is most clearly observed somewhat 
downstream of the body where the wake, according to the present results, is clearly 
convectively unstable. This is however not incompatible with the ideas put forward 
in this study since, pictorially speaking, the shedding may be imagined as being 
driven by a self-excited ' wavemaker ' centred in the nearwake where the maximum 
slope thickness of the mixing layer is approximately 4040% of the wake 
radius b*. 

To conclude this study, additional, albeit circumstantial, evidence is presented in 
support of the above hypothesis. First, it is noted that the most comprehensive 
Strouhal-number data on helical vortex shedding from spheres (Achenbach 1974, 
figure 3) show a trend with Reynolds number that is perfectly described by the 
relation St, = 0.19-400/RD, except in the transition region 2 x lo5 < R, < 3 x lo5. 
This is the same functional relation that has been proposed by Roshko (1953) for the 
Strouhal number of the Karmkn vortex shedding behind circular cylinders, and that 
has been shown by Mathis et al. (1984) and Strykowski (1986) to be compatible with 
a self-excited global response governed by the Landau equation. 

Next, as noted in 8 1, the results of Chornaz et aZ. (1988), the transient measurements 
of Mathis et al. (1984) and Strykowski (1986), and the relative success of the 
frequency selection criteria of Pierrehumbert (l984), Koch (1985) and Monkewitz & 
Nguyen (1987) in similar situations suggest that  the present linear calculations may 
be useful for finding the approximate global response frequency. This is demonstrated 
by the final figure 7 which was obtained as follows. At each Reynolds number, the 
range of shape parameters N leading to absolute instability was determined for a 
fixed A = - 1 .  The corresponding interval of real frequencies Re[wo] then yielded a 
minimum and maximum response frequehcy a t  each Reynolds number, which, after 
conversion to a Strouhal number 

St = 26*fx/Uz,,  = Re[wo]/((l - -A)n) ,  

defines the area of absolute instability on figure 7 .  Hence, all the Strouhal numbers 
within the area correspond to some local absolute instability in the wake, i.e. to some 
growing local mode with zero group velocity. At this point the choice of A = - 1 
requires some explanation since reverse flow undoubtedly occurs in the nearwake of 
axisymmetric bluff bodies. First i t  is observed that the range of Re [wO] on figure 7,  
obtained for A = -1, closely corresponds, for A < - 1, to the range of frequencies 
with maximum absolute growth rate Im[wo] (see figure 5). The argument of 
Pierrehumbert (1984) and Chomaz et al. (1988), that  the global response frequency 
is in many cases adequately approximated by the frequency of the local mode with 
zero group velocity and the largest Im [wO],  therefore serves as principal justification 
for using A = - 1 in figure 7. Second, it may be added that the actual magnitude of 
the reverse flow is difficult to establish: while the data of Fail et al. (1959), Carmody 
(1964) and Riddhagni et aZ. (1971) yield minimum velocity ratios of between - 1.9 
and -2.4, Scholz (1986) obtains, with the pulsed hot-wire technique well adapted to 
reverse-flow regions, A = - 1.1 one half-diameter downstream of a disk as opposed to 
A = - 1.5 measured by Fail et al. at the same location. 
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FIGURE 7. The range of absolutely unstable Strouhal numbers St = 2b*f+/rJZax for the profile 
family (1) with A = - 1, as a function of Reynolds number. The area of absolute instability is 
marked by A. ---, asymptotes for R-+ co; 0, data point of Scholz (1986) for a circular disk 
a t  R,  = 1.5 104;iw, data of Achenbach (1974);=, data of Mair (1965). 

To demonstrate the potential of local calculations for frequency estimates, 
different experimental data are superimposed on the theoretical results of figure 7 .  
The first set of data is from Achenbach's (1974) figure 3. Lacking direct 
measurements, the conversion to the present normalization has been made on the 
basis of A = - 1, i.e. UZax = 2U*,  and of the sphere diameter D* being equal to the 
wake diameter 2b*. While this latter assumption appears justified at the higher 
Reynolds numbers where it yields an encouraging agreement with the linear 
calculations, it is, much as in the two-dimensional case (Monkewitz 1988), apparently 
poor near the onset of the vortex shedding. 

A second data point has been obtained from Scholz's (1986) study of the wake 
behind a circular disk. The part of his results that is considered here may be 
summarized as follows. Besides distinct shear-layer modes approximately equally 
distributed between m = 0, 1, and 2 (his figure 14), he found between Reynolds 
numbers R,, based on disk diameter and free-stream velocity, of 1.5 x lo4 and 
2 x lo5 a strong m = 1 helical vortex shedding with a frequency about one order of 
magnitude below the shear-layer mode frequency (his figure 16). His measurements 
of the Strouhal numbers of the low-frequency helical mode are again compatible with 
the Roshko (1953) relationship between S t  and R. For the comparison with the 
present results only one data point was selected at  R, = 1.5 x lo4, where it was 
possible to obtain a good estimate of the ratio b*/D*. At about one diameter D* 
downstream of the disk it was estimated from Scholz's flow visualization figures 10 
and 11 to be between b*/D* = 0.69 and 0.83, yielding the error bar on figure 7 .  With 
the assumption of zero centreline velocity, i.e. Ugax = 2U*, good agreement is again 
obtained with the present stability calculations. 

Finally, some interesting experiments of Mair (1965) are discussed in which he 
explored the effect of small disks placed downstream of a blunt-based body of 
revolution (a bullet). With a disk of diameter equal to 0.8 times the base diameter 
D* placed a t  different distances from the base of the body, he found a critical 
distance of about 0.30" a t  which he observed sharply increased drag associated with 

I9 FLM 192 
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vigorous vortex shedding (without indicating the azimuthal wavenumber m).  The 
reported Strouhal number for the cases of enhanced shedding are also included on 
figure 7, again using A = - 1 and b*/D* = 0.5 for the conversion of normalizations. 
They are seen to fall somewhat high, which might possibly be due to a contraction 
of the wake over the low-pressure region between the base of the body and the 
smaller ‘after-disk’. For disk positions further downstream up to a distance of 
0.75D* from the base, Mair found a drag reduction and less organized vortex 
shedding. This points to  an intriguing possible explanation in terms of regions of 
absolute instability : With the control disk sufficiently far downstream of the body 
it may be that the wake beyond the disk is all convectively unstable with the 
postulated ‘ wavemaker ’ in the near wake either no longer self-excited owing to the 
altered boundary conditions, or effectively ‘trapped ’ between the base and the disk. 
On the other hand, with the disk atj the critical position for enhanced vortex 
shedding, it may provide a more favourable boundary condition for the global 
response to become self-excited than the base of the body. 

This leads to the final observation that, in contrast to two-dimensional wakes 
where Karmin vortex shedding is virtually universal, the large-scale helical vortex 
shedding from axisymmetric bluff bodies appears quite sensitive to the boundary 
conditions, i.e. to the shape of the blunt body and in particular to the nature of the 
separation on the body (fixed by geometry or determined by the flow). 

Appendix. The disturbance equations 
I n  the following, U ( r )  denotes the parallel mean flow velocity in the x-direction; 

&(r) ,  6 ( r ) ,  and &(r) are the mode shapes of the disturbance velocities in the streamwise 
(x), radial ( r ) ,  and azimuthal (8) direction respectively ; and $i is the mode shape of 
the disturbance pressure (see equation (3) and note that the subscript m has been 
dropped in the following). For the inviscid calculations, the incompressible form 
(A 1) of Michalke’s (1971) nonlinear first-order equation for the quantity x is 
used : 

dx l + ( r n / L ~ ) ~  
- = x 2  
dr  u-c 

The boundary conditions on the wake centreline ( A 2 )  and at infinity (A3)  are 
obtained by solving (A 1) for dU/dr = 0 with the additional requirements that all 
physical disturbance quantities are non-singular on the centreline and vanish at  
infinitv : 

Above, I ,  and K ,  are the modified Bessel functions of the first and second kind of 
order m, and a prime denotes a derivative with respect to the argument. For the 
viscous calculations, the set of equations (A 4) was used. It is essentially the same as 
the one derived in detail by Morris (1976) and is the equivalent, in cylindrical : 
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coordinates and in primitive variables, of the standard Orr-Sommerfeld equation 
plus the transverse momentum equation for three-dimensional normal modes : 

0 ’ r  

(-?) (-;) (-%) ( - i - )  (-:) 
-1 (e) (-2ik) 0 0 

(-:) (-3 (-T) (-ik) 
0 J L  

0 0 0 1 0 

0 ( K ~ + $ )  (-!) (ik) 

0 f -  
Df 

8 
4 

Dzi 

6 R  - 

1 0 0 0 

K~ = k2 + ik R [U(r )  - c ] ,  

f = ii+id, g = u-IW. ” 1 . ”  

The same physical boundary conditions as in the inviscid case lead to three linearly 
independent starting solutions each near the centreline (A 5 )  and far away from the 
wake ( A 6 )  

i 
JM 
i 

ii 

D4 

1;. 

, r + O  ( A 5 )  
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